Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs1,2,3
نویسندگان
چکیده
The development, refinement, and use of techniques that allow high-throughput imaging of whole brains with cellular resolution will help us understand the complex functions of the brain. Such techniques are crucial for the analysis of complete neuronal morphology-anatomical and functional-connectivity, and repeated molecular phenotyping. CLARITY is a recently introduced technique that produces structurally intact, yet optically transparent tissue, which may be labeled and imaged without sectioning. However, the utility of this technique depends on several procedural variables during the process in which the light-scattering lipids in a tissue are replaced by a transparent hydrogel matrix. Here, we systematically varied a number of factors (including temperature, hydrogel composition, and polymerization conditions) to provide an optimized, highly replicable CLARITY procedure for clearing mouse brains. We found that for these preparations optimal tissue clearing requires electrophoresis (and cannot be achieved with passive clearing alone) for 5 d with a combination of 37 and 55°C temperature. Although this protocol is optimized for brains, we also show that it can be used to clear and analyze a variety of organs. Brain or other tissue prepared using this protocol is suitable for high-throughput imaging with confocal or single-plane illumination microscopy.
منابع مشابه
Optimization of the optical transparency of rodent tissues by modified PACT-based passive clearing
Recently, a bio-electrochemical technique known as CLARITY was reported for three-dimensional phenotype mapping within transparent tissues, allowing clearer whole-body and organ visualization with CB-perfusion (CUBIC) and leading to the development of whole-body clearing and transparency of intact tissues with the PACT (passive clarity technique) and PARS (perfusion-assisted agent release in si...
متن کاملSingle-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing
Understanding the structure-function relationships at cellular, circuit, and organ-wide scale requires 3D anatomical and phenotypical maps, currently unavailable for many organs across species. At the root of this knowledge gap is the absence of a method that enables whole-organ imaging. Herein, we present techniques for tissue clearing in which whole organs and bodies are rendered macromolecul...
متن کاملDiffusion tensor imaging measures of white matter compared to myelin basic protein immunofluorescence in tissue cleared intact brains
We provide datasets from combined ex vivo diffusion tensor imaging (DTI) and Clear Lipid-exchanged, Anatomically Rigid, Imaging/immunostaining compatible, Tissue hYdrogel (CLARITY) performed on intact mouse brains. DTI-derived measures of fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were compared to antibody-based labeling of myelin basic protein (MBP), as mea...
متن کاملPEA-CLARITY: 3D molecular imaging of whole plant organs.
Here we report the adaptation of the CLARITY technique to plant tissues with addition of enzymatic degradation to improve optical clearing and facilitate antibody probe penetration. Plant-Enzyme-Assisted (PEA)-CLARITY, has allowed deep optical visualisation of stains, expressed fluorescent proteins and IgG-antibodies in Tobacco and Arabidopsis leaves. Enzyme treatment enabled penetration of ant...
متن کاملBone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow.
Bone tissue harbors unique and essential physiological processes, such as hematopoiesis, bone growth, and bone remodeling. To enable visualization of these processes at the cellular level in an intact environment, we developed "Bone CLARITY," a bone tissue clearing method. We used Bone CLARITY and a custom-built light-sheet fluorescence microscope to detect the endogenous fluorescence of Sox9-t...
متن کامل